标签归档:GoogLeNet

Going deeper with convolutions笔记

本文是20140926的周报,没写完,后补全。

Abstract

本文提出了一种新的分类和检测的新网络。该网络最大的特点就是提升了计算资源的利用率。在网络需要的计算不变的前提下,通过工艺改进来提升网络的宽度和深度。最后基于Hebbian Principle和多尺寸处理的直觉来提高性能。在ILSVRC-2014中提交了这种网络,叫GoogLeNet有22层。

Introduction

GoogLeNet 只用了比[9]少12倍的参数,但正确率更高。本文最大的工作是通过CNN和普通的计算机视觉结合,类似于R-CNN[6]。因为算法的ongoing traction of mobile和嵌入式计算,算法的效率变得很重要。也导致了本文不会使用绝对的数量。本文将会关注CV的深度神经网络“Inception”。本文既将Inception提升到了一个新的高度,也加深了网络的深度。 继续阅读